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A well-known book entitled One, Two, Three,. . . Infinity was published by Gamov 

about 30 years ago,1 and he began by telling a story about two Hungarian noblemen. It 
seems that the two gentle- men were out riding, and one suggested to the other that they 
play a game: Who can name the largest number. “Good,” said the second man, “you go 
first”. After several minutes of intense concentration, the first nobleman announced the 
largest number he could think of: “Three.” Now it was the other man's turn, and he 
thought furiously, but after about a quarter of an hour he gave up. “You win”, he said. 

In this article I will try to assess how much further we have come, by discussing how 
well we can now deal with large quantities. Although we have certainly narrowed the 
gap between three and infinity, recent results indicate that we will never actually be able 
to go very far in practice. My purpose is to explore relationships between the finite and 
the infinite, in the light of these developments. 

 
Some Large Finite Numbers 
 
Since the time of Greek philosophy, men have prided themselves on their ability to 

understand something about infinity; and it has become traditional in some circles to 
regard finite things as essentially trivial, too limited to be of any interest. It is hard to 
debunk such a notion, since there are no accepted standards for demonstrating that 
something is interesting, especially when something finite is compared with something 
transcendent. Yet I believe that the climate of thought is changing, since finite processes 
are proving to be such fascinating objects of study. 

In the first place, it is important to understand that finite numbers can be extremely 
large. Let us start with some very familiar and fairly small numbers: the value of xn is x 
+ x +… + x, added n times. Similarly we can define a number I shall write as x↑n, 
which means xx… x multiplied n times. For example, 10↑10 = 10.10.10.10.10.10.10.10 
10.10. = 10,000,000,000 is 10 billion; this is usually written 1010, but it will be clear in a 
minute why I prefer to use an upward arrow. In fact, the next step uses two arrows 

 
x↑↑n = x↑ (x↑ (...↑x) ...))  
 

where we take powers n times. For example 
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1 G. Gamov, One, Two, Three, . . . Infinity (Viking, New York, 1947). 
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 = 1 followed by 1010  zeros. 
This is a pretty big number; at least, if a monkey sits at a typewriter and types 
at random, the average number of trials before he types perfectly the entire text of 
Shakespeare’s Hamlet would be much, much less than this: it is merely a 1 followed by 
about 40,000 zeros. The general rule is 
 

k arrows  k –1 k –1  k –1 
x↑↑…↑ n = x↑…↑(x↑…↑(…↑…↑x)…)) 

n times 
 

Thus, one arrow is defined in terms of none, two in terms of one, three in terms of two, 
and so on. 

In order to see how these arrow functions behave, let us look at a very small example 
 

10↑↑↑↑3. 
This is equal to 

 
10↑↑↑(10↑↑↑10) 

 
so we should first evaluate 10↑↑↑(10↑↑↑10). This is 
 
10↑↑(10↑↑(10↑↑(10↑↑(10↑↑(10↑↑(10↑↑(10↑↑(10↑↑10)))))))) and that is 
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10↑↑(10↑↑(10↑↑(10↑↑(10↑↑(10↑↑(10↑↑1010 ))))))) 
 

where the stack of 10’s is 10↑↑10 levels tall. We take the huge number at the right of 
this formula, which I cannot even write down without using the arrow notation, and 
repeat the double-arrow operation, getting an even huger number, and then we must do 
the same thing again and again. Let us call the final 1236 result H. (It is such an 
immense number, we cannot use just an ordinary letter for it.) 

Of course we are not done yet, we have only evaluated 10↑↑↑10; to complete the job 
we need to stick this gigantic number into the formula for 10↑↑↑↑3, namely 

 
10↑↑↑↑3 = 10↑↑↑H = 10↑↑(10↑↑(10↑↑ ... ↑↑(10↑↑10) ... )) 

H times 



 
 
The three dots “ ... ” here suppress a lot of detail – maybe I should have used 

four dots. At any rate it seems to me that the magnitude of this number 10↑↑↑↑3 is 
so large as to be beyond human comprehension. 

On the other hand, it is very small as finite numbers go. We might have used 
arrows instead of just four, but even that would not get us much further-almost all finite 
numbers are larger than this. I think this example helps open our eyes to the fact that 
some numbers are very large even if they are merely finite. Thus, mathematicians who 
stick mostly to working with finite numbers are not really limiting themselves too 
severely. 
 

Realistic Number 
 

This discussion has set the stage for the next point I want to make, namely that our 
total resources are not actually very large. Let us try to see how big the known universe 
is. Archimedes began such an investigation many years ago, in his famous discussion of 
the number of grains of sand that would completely fill the earth and sky; he did not 
have the benefit of modern astronomy, but his estimate was qualitatively the same 
as what we would say today. The distance to the farthest observable galaxies is thought 
to be at most about 10 billion light years. On the other hand, the fundamental nucleons 
that make up matter are about 10–12 cm in diameter. In order to get a generous upper 
bound on the size of the universe, let us imagine a cube that is 40 billion light years on 
each side, and fill it with tiny cubes that are smaller than protons and neutrons, say 10–13 
cm on each side (see Fig. 1). The total number of little cubes comes to less than 10125. 
We might say that this is an “astronomically large” number, but actually it has only 125 
digits. 

Instead of talking only about large numbers of objects, let us also consider the time 
dimension. Here the numbers are much smaller; for example, if we take as a unit the 
amount of time that 

 

 
 

Fig. 1 The known universe fits inside this box. 
 
light rays take to travel l0–13 cm, the total number of time units since the dawn of the 
universe is only one fourth the number of little cubes along a single edge of the big cube 
in Fig. 1, assuming that the universe is 10 billion years old. 

Coming down to earth, it is instructive to consider typical transportation speeds.  
 
Snail   0.006 mile/hour 
Man walking  4 mile/hour 
U.S. automobile 55 mile/hour 
Jet plane  600 mile/hour 



Supersonic jet  1200 mile/hour . 
 
I would never think of walking from California to Boston, but the plane flight is only 
150 times faster. Compare this to the situation with respect to the following 
computation speeds, given 10-digit numbers. 
 
Man (pencil and paper)   0.2/sec 
Man (abacus)    1/sec 
Mechanical calculator   4/sec 
Medium-speed computer  200,000/sec 
Fast computer    200,000,000/sec.  
 
A medium-fast computer can add 1 million times faster than we can, and the fastest 
machines are 1000 times faster yet. Such a ratio of speeds is unprecedented in history: 
consider how much a mere factor of 10 in speed, provided by the automobile, has 
changed our lives, and note that computers have increased our calculation speeds by six 
orders of magnitude; that is more than the ratio of the fastest airplane velocity to a 
snail's pace. 

I do not mean to claim that computers do everything a million times faster 
than people can; mere mortals like us can do some things much better. For example, you 
and I can even recognize the face of a friend who has recently grown a mous- tache; and 
for tasks like filing, a computer may be only ten or so times faster than a good secretary. 
But when it comes to arithmetic, computers appear to be al- most infinitely fast 
compared with people. As a result, we have begun to think about computational 
problems that used to be unthinkable. Our appetite for calculation has caused us to deal 
with finite numbers much larger than those we considered before, and this has opened 
up a rich vein of challenging problems, just as exciting as the problems about 
infinity which have inspired mathematicians for so many centuries. 

Of course, computers are not infinitely fast, and our expectations have 
become inflated even faster than our computational capabilities. We are forced to 
realize that there are limits beyond which we cannot go. The numbers we can deal with 
are not only finite, they are very finite, and we do not have the time or space to solve 
certain problems even with the aid of the fastest computers. Thus, the theme of this 
article is coping with finiteness: What useful things can we say about these finite 
limitations? How have people learned to deal with the situation? 

 
Advances in Technology and Techniques 
 
During the last 15 years computer de- signers have made computing machines about 

1000 times faster. Mathematicians and computer scientists have also discov- ered a 
variety of new techniques, by which many problems can now be solved enormously 
faster than they could be- fore. I will present several examples of this; the first one, 
which is somehow symbolic of our advances in arithmetic ability, is the following 
factorization of a very large number, completed in 1970 by Morrison and Brillhart.2 1237 
 

340,282,366,920,938,463,463,374,607,431,768,211,457 
= 5,704,689,200,685,129,054,721 × 59,649,589,127,497,217. 

 

                                                 
2 M. A. Morrison and J. Brillhart, Math. Comput. 29, 183 (1975). 



The point, of course, is not simply to compute the exact 39-digit product of these two 
large numbers; that is trivial and takes only a few millionths of a second. The problem 
is to start with the big 39-digit number and to discover its prime factors. (The big 
number is 2128 + 1, and its factors are of use, for example, in the design of codes of a 
type used for space communications.) The number of microseconds per year is 
only 31,556,952,000,000, a 14-digit number, so even if we could test 1 million 
factors every second it would take about 2000 years to discover the smaller factor. 
The factorization actually took about 11/2 hours of computer time; it was achieved by a 
combination of sophisticated methods representing a culmination of mathematical 
developments that began about 160 years earlier. 
 

Latin squares 
 
Now let us look at another kind of example. Here is a so-called latin square of order 

8, an arrangement of eight numbers in eight rows and eight columns so that each 
number appears in each row and each column. 

 
1 2 3 4 5 6 7 8 
2 1 4 3 6 5 8 7 
3 4 1 2 7 8 5 6 
4 3 2 1 8 7 6 5 
5 6 7 8 1 2 3 4 
6 5 8 7 2 1 4 3 
7 8 5 6 3 4 1 2 
8 7 6 5 4 3 2 1 
 

On top of this square we can overlay another latin square of order 8, using italic 
numbers; again, there is one italic digit of every kind in every row and in every column. 
 

1 1 2 2 3 3  4 4 5 5 6 6 7 7 8 8 
2 3 1 4 4 1  3 2 6 7 5 8 8 5 7 6 
3 5 4 6 1 7  2 8 7 1 8 2 5 3 6 4 
4 7 3 8 2 5  1 6 8 3 7 4 6 1 5 2 
5 4 6 3 7 2  8 1 1 8 2 7 3 6 4 5 
6 2 5 1 8 4  7 3 2 6 1 5 4 8 3 7 
7 8 8 7 5 6  6 5 3 4 4 3 1 2 2 1 
8 6 7 5 6 8  5 7 4 2 3 1 2 4 1 3 
 
These two latin squares are called orthogonal, since the superposition shows 

that every pair of roman and italic numbers occurs exactly once. Thus we have roman 1 
with italic 1 (in the upper left corner), roman 1 with italic 2 (near the lower right 
corner), and so on; all 8 × 8 possibilities appear. Latin squares and orthogonal latin 
squares are commonly used in the design of statistical experiments and for such things 
as crop rotation. 

The great 18th-century mathematician Euler showed how to construct pairs 
of orthogonal latin squares of all sizes except for order 2, 6, 10, 14, 18, and so on, and 
he stated his belief that orthogonal latin squares of these missing orders do not exist.3 It 
is easy to verify this for order 2; and in 1900, an exhaustive analysis by a French 

                                                 
3 L. Euler, Verh. Uitg. Zeeuwsch. Genoot. Wet. Vlissingen 9, 85 (1782); Leonardi Euler 
Opera Omnia 7, 291 (1923). 



mathematician4 showed that orthogonal latin squares of order 6 are indeed impossible. 
About 20 years later, an American mathematician5 published a proof that Euler was 
right in the remaining cases 10, 14, 18, …; but unfortunately his “proof” had a serious 
flaw so the question was still not settled. Finally computers were invented, and an 
attempt was made to test Euler’s conjecture in the smallest remaining case, order 10. 

In 1952, a group of mathematicians at the University of California at Los Angeles 
(UCLA) decided to see if there were any latin squares orthogonal to the following one 
of order 10. 

 
0 1 2 3 4 5 6 7 8 9  
1 8 3 2 5 4 7 6 9 0 
2 9 5 6 3 0 8 4 7 1 
3 7 0 9 8 6 1 5 2 4  
4 6 7 5 2 9 0 8 1 3 
5 0 9 4 7 8 3 1 6 2 
6 5 4 7 1 3 2 9 0 8 
7 4 1 8 0 2 9 3 5 6 
8 3 6 0 9 1 5 2 4 7 
9 2 8 1 6 7 4 0 3 5 
 
This particular square was selected more or less at random, using a procedure 

analogous to one discussed in the next example below; the probability that the above 
latin square will be generated6 turns out to be about 10–26, so I imagine that there are 
extremely many 10 × 10 latin squares, something like 1026 at least. However, the 
computer at UCLA ran for many hours trying to find an orthogonal mate for this square; 
finally, having produced no answers, it was shut off .7 This was consistent with 
Euler’s conjecture that no mates exist, but the investigators realized that several hundred 
more years of calculation would be required to show this exhaustively- and then they 
would have to try to find mates for the other 1026 or so initial squares. 

The method used in this experiment was to look for a mate by filling in the entries 
row by row, one entry at a time in all possible ways, without violating the definition of 
orthogonal latin squares. Furthermore, they used the fact that the leftmost column of the 
orthogonal mate can be assumed to contain the digits 0 to 9 in order. Five years later 
Parker8 discovered a far better way to look for orthogonal mates. His idea was to find all 
ways to put ten 0’s into an orthogonal mate for a particular square; this means finding 
one entry in each row and each column so that no two entries contain the same digit. 
This is a much easier problem, and it turned out that there were roughly 100 ways to do 
it, using any cell in the first column. The remaining problem is to combine a solution for 
the 0’s with a solution for the l’s and a solution for the 2’s, and so forth, and again this 
is comparatively simple. Parker was able to deduce that there is exactly one latin square 
orthogonal to the one studied at UCLA, namely the italic digits in the following array. 

 
 

                                                 
4 G. Tarry, Mathésis 20 (Suppl.), 23 (1900).  
5 H. F. MacNeish, Ann. Math. 23, 221 (1922). 
6 M. Hall and D. E. Knuth, Am. Math. Mon. 72 (part 2, Computers and Computing), 21 
(1965). 
7 C. Tompkins, Proc. Symp. Appl. Math. 6, 195 (1956); L. J. Paige and C. Tompkins, 
ibid. 10, 71 (1960). 
8 E. T. Parker, ibid. 15, 73 (1963). 



0 0    1 2    2 8    3 5    4 9    5 4    6 7    7 3    8 6    9 1  
1 1    8 7    3 4    2 9    5 3    4 6    7 5    6 0    9 2    0 8 
2 2    9 5    5 6    6 4    3 8    0 7    8 0    4 1    7 9    1 3 
3 3    7 6    0 9    9 0    8 4    6 5    1 8    5 2    2 1    4 7 
4 4    6 8    7 1    5 7    2 5    9 3    0 6    8 9    1 0    3 2 
5 5    0 1    9 7    4 8    7 0    8 2    3 9    1 4    6 3    2 6  
6 6    5 9    4 0    7 2    1 7    3 1    2 3    9 8    0 4    8 5 
7 7    4 3    1 5    8 1    0 2    2 0    9 4    3 6    5 8    6 9  
8 8    3 0    6 2    0 3    9 6    1 9    5 1    2 7    4 5    7 4  
9 9    2 4    8 3    1 6    6 1    7 8    4 2    0 5    3 7    5 0 
  

And the total time for his program to be completed, on a slow computer in 1959, was 
less than 1 minute. 

This example, together with the previous example about factoring, illustrates an 
important point: we should never expect that the first way we try to do something on a 
computer is the best way. Good programming is much more subtle than that; chances 
are that an expert can find a method that will go considerably faster than that of a 
novice, especially in combinatorial problems where there have been significant 
advances in techniques during recent years. By analyzing Parker's method statistically, I 
estimate that his approach runs about 100 billion times faster than the original method 
used by the extremely competent mathematicians who studied this problem at UCLA; 
that is 11 orders of magnitude faster, because of a better idea. 

By now many sets of orthogonal latin squares of order 10 have been found, 
and orthogonal pairs are known to exist for all orders greater than 6. But 
computers were of little help in discovering these facts; the constructions were 
discovered by hand (by Parker himself in many cases), generalizing from patterns 
observed in the smaller cases.9 For order 14 the problem is so much larger that even 
Parker’s method would no longer be fast enough to search for all orthogonal mates by 
computer. This illustrates another point about combinatorial problems: the computation 
time often increases greatly when the size of the input to the problem has gone up only 
slightly. 

 
Counting the Paths on a Grid 
 
The next examples are all based on a single diagram, namely a grid of 100 squares; it 

is the diagram we would obtain if we drew boxes around the elements 1238 of a 10 × 10 
latin square. (Incidentally, there are many possible examples that illustrate the points I 
wish to make, so it was necessary for me to find some way to narrow down the 
selection. Since a 10 × 10 array fits nicely on a page, I have decided to stick mostly 
to examples that are based somehow on this one diagram.) 

First let us consider how many ways there are to go along the lines of such a grid 
from the lower left corner to the upper right corner, without touching the same point 
twice. Problems like this have been studied by chemists and physi- cists concerned with 
the behavior of large molecules;10 it seems to be a difficult problem, and no way is 
known to calculate the exact number of such paths in a reasonable amount of 

                                                 
9 For a complete survey see J. Dénes and A.D. Keedwell, Latin Squares and Their 
Applications (Academic Press, New York, 1974). 
10 See, for example, M. N. Barber and B. W. Ninham, Random and Restricted Walks 
(Gordon & Breach, New York, 1970), chap. 7. 



time. However, it is possible to obtain approximate solutions which are correct 
with high probability. 

The idea is to construct a “random” path from the starting point to the finishing 
point. First we must go up or to the right; by flipping a coin or rolling some dice we 
might decide to go right. Again there are two choices, and half the time we will go up. 
From here there are three possibilities, and we may choose from these at random, say to 
the right. And so on. 

 

 
 

Fig. 2. A “random” path from the lower left corner to the upper right corner of a 10 × 10 
grid. 

 
Figure 2 shows the first random path I generated in this way. At each choice point of 

Fig. 2, I have written the number of alternatives present when the path got that far. For 
example, the l’s at the edges mean that there is only one way to go, since the other way 
either is already occupied or leads into a trap. 

The probability that this particular path would be obtained by such a random 
procedure is the product of all the individual probabilities at each choice point, namely  
 

 1 . 1 . 1 . 1 .  … . 1 . 1 . 1 
 2   2   3   3           3   1   2 

 
= 2–343–24 = ¼,852,102,490,441,335,701,504 

 
about one chance in 5 ×1021. So I am pretty sure that you have never seen this particular 
path before, and I doubt if I will ever generate it again. 

In a similar vein, it is interesting to note that the great Mozart wrote a considerable 
amount of music that has never yet been performed. In one of his more playful 
moments, he specified 11 possibilities for each of the 16 bars of a waltz;11 the idea was 
that people from the audience should roll dice 16 times, obtaining a sequence of 16 
numbers between 2 and 12 inclusive, and the performers would play the 16 bars 
corresponding to these respective rolls. The total number of ways to play Mozart’s dice 

                                                 
11 W. A. Mozart, Musikalisches Würfelspiel (Schott, Mainz, 1956), K 516 fAnh. C 
30.01; this was first published in 1793.  



waltz is 2 × 1114 = 759,499,667, 966,482;12 so it is safe to say that fewer than one out of 
every million of Mozart’s melodies will ever be heard by human ear. 

Actually I have a phonograph record that contains 36 randomly selected waltzes 
from Mozart’s scheme,13 and after hearing the fifth one or so I began to feel that the rest 
all sounded about the same. We might suspect that a similar thing will happen in this 
random path problem; all random paths from lower left to upper right might tend to 
look approximately like the first few. 

 

 
 
Fig. 3. A second path, which would be obtained with probability  ≈ 3 × 10–12 
 
Figure 3 shows the second path I generated by making random choices; note that this 

one has quite a different character, and the strange thing is that the probability of 
obtaining it is more than ten orders of magnitude larger than we saw before. But still 
the probability is “negligibly small”. 

The third path I generated in this way decided to get into a corner and to hug the 
edge. The fourth one had its own twist; and the fifth was reminiscent of the first. These 
paths are shown in Fig. 4; of course I am displaying here each path exactly as I obtained 
it, not suppressing any that were uninteresting or unexpected, because the experiment 
must be unbiased. 

 

                                                 
12 The 11 possibilities for bar 8 are all identical, and Mozart gave only two distinct 
possibilities for bar 16, so the total number of waltzes is 2 × 1114 rather than 1116. 
13 T. H. O’Beirne, Dice-Composition Music (Barr & Stroud, Glasgow, 1967). 



 
 

Fig. 4a) probability ≈ 10–11 
 

 
 

Fig. 4b) probability ≈ 7.10–11 

 

 
 

Fig. 4c) probability ≈ 5.10–24 
 
 

Fig. 4. Three more randomly generated paths, with their associated probabilities. 
 



The difference between this game and Mozart's dice music is that we know of no 
way to generate a truly random path, in the sense that each path should occur with the 
same probability. Although we have seen that each path occurs with extremely small 
probability, virtually zero, the actual probabilities differ from each other by many orders 
of magnitude. 

If we want to estimate the total number of possible paths, solely on the basis of these 
data, a theorem of statistics tells us that the best estimate is obtained by using the 
average value of the reciprocals of the probabilities observed. Thus, although three of 
these five paths had probabilities around 10–11, suggesting that there are about 1011 
possible paths, the much lower probabilities in the other two cases imply that it is much 
better to guess that there are about 1022 paths in all. Based on the five experiments I 
have described, the best estimate of the average length of path will be about 70; and the 
best estimate of the chance that the point in the middle occurs somewhere on the path is 
that it almost always occurs, even though three-fifths of the experiments said the 
opposite. When large numbers like this are involved, we get into paradoxical situations, 
where the rules of statistics tell us that the best estimates are made by throwing 
away most of our data. 

As you might expect, five experiments are not enough to determine the 
answers reliably. But by using a computer to generate several thousand random paths in 
the same way, I am fairly confident that the total number of possible paths from lower 
left to upper right is (1.6 ± 0.3) × 1024, and that the average length of path is 92 ± 5. 
Conflicting evidence was obtained about the chance of hitting the center, but it seems 
that 81 ± 10 percent of all paths do hit the center point. Of course, I have only generated 
an extremely small fraction of these paths, so I cannot really be sure; perhaps nobody 
will ever know the true answer. 

 
The shortest Path 
 
For the next examples we will add weights to the lines in the grid. The basic diagram 

is shown in Fig. 5, where a random digit has been placed beside each line; these digits 
may be thought of as the lengths of roads between adjacent points of intersection. Thus, 
there are three roads of length 4 on the bottom line, and the upper part of the 
diagram contains three adjacent roads of length 0. Actually I must admit that the 
sequences of numbers are not completely arbitrary; for example, the reader might 
recognize 1.414213562... in the top line as the square root of 2, and π appears down 
the second column. For our purposes these digits will be random enough. 

 

 
 

Fig. 5 Network to be used in subsequent examples, based on 20 mathematical constants. 



 
 
The first problem we might ask about such a network of roads is: What is the shortest 

route from the lower left corner 1239 to the upper right corner? We have estimated that 
there are some 1024 possible paths, and we might want to know which of these is 
shortest, using the given lengths. 

Fortunately we do not have to try all possible paths to find the shortest; there is a 
simple method due to Dijkstra14 which can be used to solve this problem by hand in less 
than half an hour. The answer (see Fig. 6) is a curious sort of path, which might very 
well be missed if one does not use a systematic method; it is the only way to go from 
southwest to northeast in a path of length 43. 

 

 
 
Fig. 6. The shortest route from lower left to upper right in this network of roads. 

 
The idea underlying Dijkstra’s method is rather simple. Suppose that at some stage 

we have found all positions at distance 20 or less, say, from the southwest corner. By 
looking at the roads connecting these points to the others it will be easy to see which 
points will be at distance 21, and so on. You can imagine a fluid spreading over the 
diagram at the rate of one unit of length per minute. 

 
Connecting Points in a Network 
 
The next problem is somewhat harder. Suppose we want to construct 

electrical connections between all four of the corner points in Fig. 5: What is the 
shortest electrical network joining these four points, sticking to the lines and 
distances shown? Such a network is usually called a Steiner tree,15 and Fig. 7 shows 
the shortest possible one. 

                                                 
14 E. W. Dijkstra, Numer. Math. 1, 269 (1959). 
15 See, for example, N. Christofides, Graph Theory, An Algorithmic Approach 
(Academic Press, London, 1975), sect. 7.4. 



 
 

Fig. 7. The shortest way to connect the four corners. 
 
The number of possible Steiner trees connecting the four corners is much larger than 

the number of paths, but still I am sure that this is the shortest. In this case I do not 
know how to compute the shortest by hand, but a properly programmed computer can 
do it in a few seconds. 

We say that we have a “good” algorithm for some problem if the time to solve it 
increases only as a polynomial in the size of the inputs; in other words, if doubling the 
size of the problem increases the solution time by at most a constant  factor. There is a 
good algorithm to find Steiner trees connecting up to five points; it takes roughly n3 
steps, where n is the total number of points in the network of roads.16 But if we want 
to connect larger numbers of points by Steiner trees, the computation rapidly 
gets larger; and when the number of points to be connected is, say, as large as n/10, 
no good algorithm is known. 

On the other hand, when our job is to find the shortest way to connect up all n 
of the points in the network, a good algorithm is available, again one that is so good it 
can be performed by hand in half an hour. 

A minimal connection of all points in a network is called a spanning tree, and in the 
particular network we are considering it is possible to prove that the number of possible 
spanning trees is really huge, more than 4 × 1052; in fact, the exact number17 is 
40,325,021,721,404,118,513,276,859,513,497,679,249,183,623, 593,590,784. Yet we 
can find the best one, in a remark- ably easy way discovered by Kruskal:18 simply 
consider all the lines one by one in order of increasing length, starting with the shortest 
one, then the next shortest, and so on. In case of ties between lines of the same length, 
use either order. The rule is to include each line in the spanning tree if and only if it 

                                                 
16 First construct the matrix of distances between all pairs of points, then try all possible 
intermediate junction points. 
17 A determinant formula that specifies the number of spanning trees in a particular 
graph was discovered by C. W. Borchardt [J. Reine Angew. Math. 57, 111 (1860)]. 
When the graph is a square grid, with m rows and m columns, the number of spanning 
trees seems to be always of the form mx2 or 2mx2, where all the prime factors > m of x 
are rather small numbers of the form km ± 1; at least this is true when m < 12. For 
example, the large number cited in the text corresponds to the case m = 11, and in 
factored form it equals 215 . 112 . 232 . 89 . 109 . 199 . 241 . 373 . 397 . 419. This curious 
circumstance, which I noticed while preparing the present article, still awaits a 
theoretical explanation. 
18 J. B. Kruskal, Jr., Proc. Am. Math. Soc. 7, 48 (1956). 



connects at least two points that are not connected by a path of previously selected lines. 
This is called the greedy algorithm because it is based on the idea of trying the best 
conceivable possibilities first. Such a policy does not always solve a combinatorial 
problem – we know that greed does not always pay off in the long run – but in the case 
of spanning trees the idea works perfectly (see Fig. 8). 

 

 
 

Fig. 8. A minimum spanning tree. 
 

Maximum Matching 
Another problem on this network for which a good algorithm is available is 

to choose 60 of the lines with the maximum possible sum, no two overlapping. We may 
think now of the points as people, instead of as cities, and the numbers now measure the 
amount of happiness generated between one person and his or her neighbor. The idea is 
to pair off the people so as to get the maximum total happiness. If men and women 
alternate in the diagram, with men at the corners, there will be 61 men and 60 women in 
all, so one man will have no partner; he makes a personal sacrifice for the greater good 
of the group as a whole. There are exactly 1,801,272,981,919,008 ways to do such a 
pairing, according to a mathematical theory worked out to solve a physical problem 
about crystals;19 Fig. 9 exhibits the best one. 

 

 
 

Fig. 9. The best choice of 60 nonoverlapping lines in the diagram. 
                                                 

19 E. W. Montroll, in Applied Combinatorial Mathematics, E. F. Beckenbach, Ed. 
(Wiley, New York, 1964), sect. 4.4. 



 
It turns out that the circled man is the best to omit, and the others should pair up in 

this way. Once again we are able to find the optimum solution in 1 or 2 seconds on a 
computer if we use a suitable algorithm, even though the number of possible 
arrangements is far too large to examine exhaustively. In this case the algorithm is 
somewhat more subtle than the ones I have discussed earlier, but it is based on simple 
ideas. First we add a “dummy” woman who will be paired with the man who gets no 
real woman. The happiness rating is 0 between the dummy woman and every man. 
Then if we add or subtract some number from all the happiness ratings touching any 
particular person, the solution to the problem does not change. A clever way of 
adjusting these scores can be used so that all 61 of the ratings for the couples 
matched here are 9, and all the other ratings are 9 or less.20 

 
An Apparently Harder Problem  
 
From these examples, one might get the idea that a good algorithm can be found for 

virtually any combinatorial problem. Unfortunately this does not appear to be true, 
although I did want to demonstrate that considerable progress has been made toward 
finding good methods. The next problem seems to be much harder: What is the shortest 
path from the lower left corner to the upper right corner that passes through all 121 
points of the grid exactly once? 

This is called the traveling salesman problem, because we might think of a salesman 
who wants to visit each city with minimum travel time. The problem arises frequently 
in industry – for example, when the goal is to find the best  order in which to do n jobs, 
based on the costs of changing from one job to another. But it has resisted all attacks; 
we know how to solve medium-sized problems, but the algorithms are not good in the 
technical sense since the running time goes up rapidly on large cases. 

 

 
 
Fig. 10. A shortest path from lower left to upper right, touching each point just once. 
 
The traveling salesman's path shown in Fig. 10 is as short as possible, and it required 

several minutes of computer time to verify the fact. To my knowledge, this is the largest 
network for which the traveling salesman problem has yet been solved exactly. I used 
a method suggested in 1971 by Held and Karp,21 based on a combination of ideas we 

                                                 
20 This is the well-known “Hungarian method” for the assignment problem; for 
example, see (15, sect. 12.4). 
21 M. Held and R. M. Karp, Math. Prog. 1, 6 (1971).   



have applied to other problems: it is possible to add or subtract numbers from all the 
lines which touch a particular point, without changing the shape of the minimum tour, 
and we can use the greedy algorithm to construct a minimum spanning tree for the 
changed distances. The minimum spanning tree is no longer than the shortest tour, since 
every tour is a spanning tree; but by properly modifying the distances we can make 
the minimum spanning tree very nearly a tour, so comparatively few possibilities need 
to be tried. I extended the Held and Karp method to take advantage of the fact that each 
point has at most four neighbors. In this way it was possible to verify at .reasonable cost 
that this tour is optimum; but if I were faced with a larger problem, having say twice 
as many points to visit, there would be no known method to get the answer in 
a reasonable amount of time. 

In fact, it may well be possible in a few years to prove that no good algorithm exists 
for the traveling salesman problem. Since so many people have tried for so many years 
to find a good algorithm, without success, the trend is now to look 1241 for a proof that 
success in this endeavor is impossible. It is analogous to the question of solving 
polynomial equations: quadratic equations were resolved in ancient Mesopotamia, and 
the solution of cubic and quartic equations was found at the beginning of the 
Renaissance, but nobody was able to solve arbitrary equations of the fifth degree. 
Finally, during the first part of the 19th century, Abel and Galois proved conclusively 
that there is no way to solve fifth degree equations in general, using ordinary 
arithmetic.22 It is now believed that there is no good algorithm for the general traveling 
salesman problem, and we are awaiting another Abel or Galois to prove it. 

In support of this belief, several important things have already been proved, notably 
that the traveling salesman problem is computationally equivalent to hundreds of other 
problems of general interest.23 If there is a good algorithm for any one of these 
problems, which for technical reasons are called NP-complete problems, then there will 
be good algorithms for all the NP-complete problems. Thus, for example, a good 
algorithm for the traveling salesman problem would lead immediately to a 
good algorithm for many other difficult problems, such as the optimum scheduling 
of high school classes, the most efficient way to pack things into boxes, or the best 
Steiner trees connecting a large number of points. A good solution to any one of these 
problems will solve them all, so if any one of them is hard they all must be. 

 
A Provably Harder Problem 
 
In recent years, certain problems have, in fact, been shown to be intrinsically hard, in 

the sense that there will never be a fast way to solve them. Probably the most interesting 
example of this type was developed in 1974 by A. Meyer and L. J. Stockmeyer.24 
The problem is to decide whether or not certain logical statements about whole numbers 
0, 1, 2 … are true or false, even when the form of these statements is severely restricted. 

                                                 
22 See, for example, C. B. Boyer, A History of Mathematics (Wiley, New York, 1968), 
pp. 555 and 641. 
23 R. M. Karp, in Complexity of Computer Computations, R. E. Miller and i. W. 
Thatcher, Eds. (Plenum, New York, 1972), p. 85. See also A. V. Aho, J. E. Hopcroft, J. 
D. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley, 
Reading, Mass., 1974), chap. 10. For a popular account of related work, see G. 
B. Kolata, Science 186, 520 (1974). 
24 L. J. Stockmeyer, The Complexity of Decision Problems in Automata Theory and 
Logic (report MAC TR-l33, Massachusetts Institute of Technology, Cambridge, 1974), 
chap. 6. 



Here are some examples of the sort of statements we must deal with. 
 

048 ≤ 1063 
 

a statement which is clearly true. 
 

∀n∃m(m < n + 1) 
 

This is logical shorthand that can be translated as follows, for people who are not 
familiar with the new math: “For all numbers n there exists a number m such that m is 
less than n + 1”. It is clearly a true statement, since we may take m equal to n. 

∀n∃m(m + 1 < n) 
 

“For all numbers n there exists a number m such that m + 1 is less than n”. 
This statement is false, for if n = 0 there is no number less than zero; we are considering 
only statements about nonnegative numbers. 

The next example is a little more complicated. 
 

∀x∀y(y ≥ x + 2 → ∃(x < z ∧ z < y)) 
 
“For all numbers x and all numbers y, if y is greater than or equal to x + 2 then there 
exists a number z such that x is less than z and z is less than y”. In other words, if y is at 
least 2 more than x, there is a number z between x and y, and this is obviously true. 

Finally we can also make statements about sets of numbers; for example 
 

∀S(∃x(x ∈ S → ∃y(y ∈ S ∧ ∀z(z ∈ S ∧ y ≤ z)). 
 

“For all sets S of numbers, if there exists a number x such that x is in S then there exists 
a number y such that y is in S and for all numbers z in S we have y ≤ z”. Informally, the 
statement says that every set of numbers which is not empty has a smallest element, and 
this is true. 

The logical statements we shall be concerned with cannot be essentially any harder 
than these examples; they may not involve subtraction, multiplication, or division; they 
cannot even involve addition except addition of a constant. (They cannot involve the 
formula x + y.) Thus the statements must be very simple – much, much simpler than 
those used every day by mathematicians constructing proofs of theorems. 

According to a well-known theorem of Büchi,25 it is possible to decide in a finite 
number of steps whether or not any statement of the simple kind we have described is 
true or false, even though these logical statements may concern infinitely many cases. 

But the new theorem says that it is impossible actually to do this in the real world, 
even if we limit ourselves to statements that can be written in no more than 617 
symbols: “No realistic algorithm will ever be able to decide truth or falsity for arbitrary 
given statements of length 617 or less”. 

In order to understand exactly what this theorem means, we have to know what it 
means to speak of a “realistic” algorithm. The theorem of Meyer and Stockmeyer is 
based on the fact that anything that can be done by computer can be done by 

                                                 
25 J. R. Büchi, Z. Math. Logik Grundl. Math. 6, 6 (1960). 
 

 



constructing an electrical network, and so they envisage a setup like that shown in Fig. 
11. 

 

 
 
Fig. 11. Electrical network to decide the correctness of logical statements containing 

617 characters or less. 
 
At the top of such a device, one can insert any statement whose truth is to be tested. 

The logical language involved here makes use of 63 different symbols, including 
upper and lower case letters and a blank symbol, so we can place the statement 
(followed if necessary by blanks) into a sequence of 617 positions. Each position 
is converted into six electrical pulses, whose configuration of “on” and “off” identifies 
the corresponding character; thus, the letter X might be represented by the six pulses 
“off, on, on, off, off, on”. The resulting 6 × 617 pulses now enter an electrical network 
or “black box” consisting of AND, OR, and NOT circuits; AND produces a signal that 
is “on” only when both inputs to AND are “on”, OR produces a signal that is “on” when 
either or both of its inputs are “on”, and NOT changes “on” to “off” and vice versa. At 
the bottom of the network, a pulse comes out which is “on” or “off” according to 
whether the given logical statement of length 617 was true or false. 

According to Büchi’s theorem, it is possible to construct such an electrical network 
with finitely many components, in a finite amount of time. But Meyer and Stockmeyer 
have proved that every such network must use at least 10125 components, and we have 
seen that this is much larger than the number of protons and neutrons in the entire 
known universe. 

Thus it is hopeless to find an efficient algorithm for this finite problem. We have to 
face the fact that it can never be done-no matter how clever we may become, or how 
much money and energy is invested in the project. 1242 

What should we do in the face of such limitations? Whenever something has been 
proved impossible, there is an aspect of the human spirit that encourages us to find 
some way to do it anyway. In this particular case, we might try the following sneaky 
approach: We could build an electric circuit which gives the correct answer in all simple 
cases and which gives a random answer, true or false, in the other cases. Since the 
problem is so hard, nobody will be able to know the difference. 

But this is obviously unsatisfactory. A better approach would be to distinguish 
between levels of truth; for example, the answer might be “true”, “false”, or “maybe”. 
And we could give various shades of “maybe”, saying perhaps that the statement is true 
in lots of cases. 

Let us consider the traveling salesman problem again. It is reasonably likely that, 
some day, somebody will prove that no good algorithm exists for this problem. If so, 
that will be a truly great theorem; but what should we do when we actually need to 
solve such a problem? 



The answer, of course, is to settle for a tour that is not known to be the shortest 
possible one, but is pretty close. It has recently been observed that we can quickly find a 
traveling salesman’s tour that is guaranteed to be no worse than 50 percent longer than 
the shortest possible tour, if the distances satisfy the triangle inequality. And algorithms 
have recently been developed for other problems that give answers which are probably 
correct, where the degree of probability can be specified, but the answer is not certain. 

In this way, computer scientists and mathematicians have been learning how to cope 
with our finite limitations. 

 
Summary 
 
By presenting these examples, I have tried to illustrate four main points. 
1) Finite numbers can be really enormous, and the known universe is very small. 

Therefore the distinction between finite and infinite is not as relevant as the distinction 
between realistic and unrealistic. 

2) In many cases there are subtle ways to solve very large problems quickly, in spite 
of the fact that they appear at first to require examination of too many possibilities. 

3) There are also cases where we can prove that a fairly natural problem 
is intrinsically hard, far beyond our conceivable capabilities. 

4) It takes a good deal of skill to decide whether a given problem is in the easy or 
hard class; but even if a problem does turn out to be hard there are useful and interesting 
ways to change it into one that can be done satisfactorily. 
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